Browsing by Subject "Bosques aleatorios"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open AccessEnhancing inflation nowcasting with online search data: a random forest application for Colombia(Banco de la República ) Roldán-Ferrín, Felipe; Parra-Polanía, Julián AndrésEste artículo evalúa la capacidad predictiva de un modelo de aprendizaje automático basado en Random Forest (RF), combinado con datos de Google Trends (GT), para realizar nowcasting de la inflación mensual en Colombia. El modelo propuesto, denominado RF-GT, se entrena utilizando datos históricos de inflación, indicadores macroeconómicos y actividad de búsqueda en internet. Tras la optimización de los hiperparámetros mediante validación cruzada para series de tiempo, se evalúa su desempeño fuera de muestra durante el periodo 2023–2024. Los resultados se comparan con enfoques tradicionales, incluidos los modelos SARIMA, regresiones Ridge y Lasso, así como con los pronósticos profesionales de la Encuesta Mensual de Expectativas (EME) del Banco de la República. En términos de precisión predictiva, el modelo RF-GT supera de forma consistente a los modelos estadísticos y muestra un desempeño comparable al pronóstico mediano de los analistas, con la ventaja adicional de generar predicciones aproximadamente semana y media antes. Estos hallazgos destacan el valor práctico de integrar fuentes de datos alternativas y técnicas de aprendizaje automático en los sistemas de monitoreo de inflación de economías emergentes.Documentos de Trabajo. 2025-07-02Borradores de Economía; No.1318